Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.176
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Elife ; 132024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573819

RESUMO

Oncogenic mutations in KRAS are among the most common in cancer. Classical models suggest that loss of epithelial characteristics and the acquisition of mesenchymal traits are associated with cancer aggressiveness and therapy resistance. However, the mechanistic link between these phenotypes and mutant KRAS biology remains to be established. Here, we identify STAT3 as a genetic modifier of TGF-beta-induced epithelial to mesenchymal transition. Gene expression profiling of pancreatic cancer cells identifies more than 200 genes commonly regulated by STAT3 and oncogenic KRAS. Functional classification of the STAT3-responsive program reveals its major role in tumor maintenance and epithelial homeostasis. The signatures of STAT3-activated cell states can be projected onto human KRAS mutant tumors, suggesting that they faithfully reflect characteristics of human disease. These observations have implications for therapeutic intervention and tumor aggressiveness.


Assuntos
Neoplasias Pancreáticas , Fator de Crescimento Transformador beta , Humanos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557489

RESUMO

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Assuntos
Canais de Cálcio , Cálcio , Camundongos , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Pâncreas/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/genética
3.
Nat Commun ; 15(1): 3318, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632302

RESUMO

Pancreatic islets of Langerhans play a pivotal role in regulating blood glucose homeostasis, but critical information regarding their mass, distribution and composition is lacking within a whole organ context. Here, we apply a 3D imaging pipeline to generate a complete account of the insulin-producing islets throughout the human pancreas at a microscopic resolution and within a maintained spatial 3D context. These data show that human islets are far more heterogenous than previously accounted for with regards to their size distribution and cellular make up. By deep tissue 3D imaging, this in-depth study demonstrates that 50% of the human insulin-expressing islets are virtually devoid of glucagon-producing α-cells, an observation with significant implications for both experimental and clinical research.


Assuntos
Células Secretoras de Glucagon , Ilhotas Pancreáticas , Humanos , Pâncreas/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo , Glicemia/metabolismo , Secreção de Insulina
4.
Life Sci ; 344: 122546, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462227

RESUMO

BACKGROUND: Autophagy is a well-preserved mechanism essential in minimizing endoplasmic reticulum stress (ER)-related cell death. Defects in ß-cell autophagy have been linked to type 1 diabetes, particularly deficits in the secretion of insulin, boosting ER stress sensitivity and possibly promoting pancreatic ß-cell death. Quercetin (QU) is a potent antioxidant and anti-diabetic flavonoid with low bioavailability, and the precise mechanism of its anti-diabetic activity is still unknown. Aim This study aimed to design an improved bioavailable form of QU (liposomes) and examine the impact of its treatment on the alleviation of type 1 diabetes induced by STZ in rats. METHODS: Seventy SD rats were allocated into seven equal groups 10 rats of each: control, STZ, STZ + 3-MA, STZ + QU-Lip, and STZ + 3-MA + QU-Lip. Fasting blood glucose, insulin, c-peptide, serum IL-6, TNF-α, pancreatic oxidative stress, TRAF-6, autophagy, endoplasmic reticulum stress (ER stress) markers expression and their regulatory microRNA (miRNA) were performed. As well as, docking analysis for the quercetin, ER stress, and autophagy were done. Finally, the histopathological and immunohistochemical analysis were conducted. SIGNIFICANCE: QU-Lip significantly decreased glucose levels, oxidative, and inflammatory markers in the pancreas. It also significantly downregulated the expression of ER stress and upregulated autophagic-related markers. Furthermore, QU-Lip significantly ameliorated the expression of several MicroRNAs, which both control autophagy and ER stress signaling pathways. However, the improvement of STZ-diabetic rats was abolished upon combination with an autophagy inhibitor (3-MA). The findings suggest that QU-Lip has therapeutic promise in treating type 1 diabetes by modulating ER stress and autophagy via an epigenetic mechanism.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , MicroRNAs , Nanopartículas , Ratos , Masculino , Animais , Quercetina/uso terapêutico , Lipossomos/uso terapêutico , MicroRNAs/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Lábio/metabolismo , Lábio/patologia , Ratos Wistar , Ratos Sprague-Dawley , Pâncreas/metabolismo , Estresse Oxidativo , Insulina/metabolismo , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático , Autofagia
5.
Sci Rep ; 14(1): 6582, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503902

RESUMO

Although pancreatic precancerous lesions are known to be related to obesity and fatty pancreatic infiltration, the mechanisms remain unclear. We assessed the role of fatty infiltration in the process of pancreatic oncogenesis and obesity. A combined transcriptomic, lipidomic and pathological approach was used to explore neoplastic transformations. Intralobular (ILF) and extralobular (ELF) lipidomic profiles were analyzed to search for lipids associated with pancreatic intraepithelial neoplasia (PanINs) and obesity; the effect of ILF and ELF on acinar tissue and the histopathological aspects of pancreatic parenchyma changes in obese (OB) and non-obese patients. This study showed that the lipid composition of ILF was different from that of ELF. ILF was related to obesity and ELF-specific lipids were correlated to PanINs. Acinar cells were shown to have different phenotypes depending on the presence and proximity to ILF in OB patients. Several lipid metabolic pathways, oxidative stress and inflammatory pathways were upregulated in acinar tissue during ILF infiltration in OB patients. Early acinar transformations, called acinar nodules (AN) were linked to obesity but not ELF or ILF suggesting that they are the first reversible precancerous pancreatic lesions to occur in OB patients. On the other hand, the number of PanINs was higher in OB patients and was positively correlated to ILF and ELF scores as well as to fibrosis. Our study suggests that two types of fat infiltration must be distinguished, ELF and ILF. ILF plays a major role in acinar modifications and the development of precancerous lesions associated with obesity, while ELF may play a role in the progression of PDAC.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Lesões Pré-Cancerosas , Humanos , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia , Transformação Celular Neoplásica/genética , Carcinoma in Situ/patologia , Lesões Pré-Cancerosas/patologia , Obesidade/complicações , Obesidade/patologia , Lipídeos , Carcinoma Ductal Pancreático/patologia
6.
Bioorg Med Chem ; 103: 117678, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489997

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC), representing over 90 % of pancreatic cancer diagnoses, is an aggressive disease with survivability among the worst of all cancers due to its difficulty in detection and its high metastatic properties. Current therapies for PDAC show limited success at extending life expectancies, primarily due to cancer resistance and lack of patient-specific targeted therapies. This work highlights the design and evaluation of estrone-derived analogs with both heterocyclic side-chain functionality and 11-oxygenated functionality for use in pancreatic cancer. First-round heterocyclic analogs show preliminary promise in AsPC-1 and Panc-1 cell lines, with IC50 values as low as 10.16 ± 0.83 µM. Their success, coupled with design choices from other studies, led to the synthesis of novel 11-hydroxyl and 11-keto estrone analogs that show potent in-vitro toxicity against various pancreatic cancer models. The three most cytotoxic analogs, KA1, KA2, and KA9 demonstrated low micromolar activities in both MTT and CellTiter assays in three pancreatic cancer cell lines: AsPC-1, Panc-1, and BxPC-3, as well as in a co-culture of Panc-1 and pancreatic stellate cells. IC50 values for KA9 (4.17 ± 0.90, 5.28 ± 1.87, and 5.70 ± 0.65 µM respectively) shows consistency in all cell lines tested. KA9 is also able to cause an increase in caspases 3 and 7 activity, key markers for apoptosis, at non-cytotoxic concentrations. Additional work was performed by generating 3D pancreatic cancer spheroids to better modulate the pancreatic tumor microenvironment, and KA9 continued to show the best IC50 values (21.0 and 24.3 µM) in both cell types tested. KA9 was also able to prevent the growth of spheroids whereas the standard chemotherapy, Gemcitabine, could not, suggesting that it may be a potent analog for future development of treatments. Molecular dynamic simulations were also performed to confirm biological findings and uncovered that KA9's preferential binding location is in the active site pocket of key proteins involved in cytotoxicity.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Estrona/farmacologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Gencitabina , Pâncreas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Vet Med Sci ; 10(2): e1394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459816

RESUMO

BACKGROUND: Lovebird (Agapornis personatus) is a monotypic species of bird of the lovebird genus in the parrot family Psittaculidae and order Psittaciformes. OBJECTIVES: The present study was designed to investigate the histology and immunohistochemistry of the pancreas in the lovebird. METHODS: Totally, three adult birds were used. The pancreas was assessed using histological and immunofluorescent staining to detect insulin, glucagon, somatostatin, pancreatic polypeptide (PP) and neuropeptide Y (NY). RESULTS: The exocrine pancreas was composed of pyramidal acinar cells with zymogen granules at the apical cytoplasm. The endocrine pancreas was identified as large alpha, small beta and mixed islets of Langerhans. No intercalated duct was observed. Alpha cells with a density of 28.55% were the most numerous cell type, which were populated throughout the large islets, especially at the periphery. The beta cells with a density of 15.78% were accumulated mostly at the periphery of islets. The delta cells exhibited 17.81% intensity. Despite their lower density, the distribution of delta cells was like that of A cells throughout the islets. PP and NY cells were distinguished with densities of 14.69% and 20.63%, respectively. CONCLUSIONS: Although the arrangement of acinar cells, ductal systems and endocrine islets reflects patterns observed in various avian species, the absence of intercalated duct, the presence of three types of Langerhans islets as alpha, beta and mixed islets and the high expression of NY in the islets were some unique features observed in the current study. These findings contribute to the broader understanding of avian pancreas histology.


Assuntos
Agapornis , Ilhotas Pancreáticas , Animais , Pâncreas/metabolismo , Pâncreas/patologia , Ilhotas Pancreáticas/metabolismo , Glucagon/metabolismo , Insulina/metabolismo , Corantes
8.
Clin Exp Pharmacol Physiol ; 51(3): e13843, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302075

RESUMO

This study explores the potential mechanisms of obstructive sleep apnoea (OSA) complicates type 2 diabetes mellitus (T2DM) by which chronic intermittent hypoxia (CIH) induces insulin resistance and cell apoptosis in the pancreas through oxidative stress. Four- and eight-week CIH rat models were established, and Tempol (100 mg/kg/d), was used as an oxidative stress inhibitor. This study included five groups: 4-week CIH, 4-week CIH-Tempol, 8-week CIH, 8-week CIH-Tempol and normal control (NC) groups. Fasting blood glucose and insulin levels were measured in the serum. The expression levels of 8-hidroxy-2-deoxyguanosine (8-OHdG), tribbles homologue 3 (TRB3), c-Jun N-terminal kinase (JNK), phosphorylated JNK (p-JNK), insulin receptor substrate-1 (IRS-1), phosphorylated IRS-1 (Ser307) (p-IRS-1ser307 ), protein kinase B (AKT), phosphorylated AKT (Ser473) (p-AKTser473 ), B cell lymphoma protein-2 (Bcl-2), cleaved-caspase-3 (Cl-caspase-3), and the islet cell apoptosis were detected in the pancreas. CIH induced oxidative stress in the pancreas. Compared with that in the NC group and CIH-Tempol groups individually, the homeostasis model assessment of insulin resistance (HOMA-IR) and apoptosis of islet cells was increased in the CIH groups. CIH-induced oxidative stress increased the expression of p-IRS-1Ser307 and decreased the expression of p-AKTSer473 . The expression levels of TRB3 and p-JNK were higher in the CIH groups than in both the CIH-Tempol and NC groups. Meanwhile, the expressions of Cl-caspase-3 and Bcl-2 were upregulated and downregulated, respectively, in the CIH groups. Hence, the present study demonstrated that CIH-induced oxidative stress might not only induce insulin resistance but also islet cell apoptosis in the pancreas through TRB3 and p-JNK.


Assuntos
Óxidos N-Cíclicos , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Marcadores de Spin , Animais , Ratos , Apoptose , Caspase 3/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipóxia/complicações , Estresse Oxidativo , Pâncreas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo
9.
Reprod Biomed Online ; 48(4): 103727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402677

RESUMO

RESEARCH QUESTION: Does type 1 diabetes mellitus (T1DM) affect reproductive health of female patients? What is the potential mechanism of reproductive dysfunction in female patients caused by T1DM? DESIGN: Preliminary assessment of serum levels of female hormones in women with or without T1DM. Then histological and immunological examinations were carried out on the pancreas, ovaries and uteri at different stages in non-obese diabetic (NOD) and Institute of Cancer Research (ICR) mice, as well as assessment of their fertility. A protein array was carried out to detect the changes in serum inflammatory cytokines. Furthermore, RNA-sequencing was used to identify the key abnormal genes/pathways in ovarian and uterine tissues of female NOD mice, which were further verified at the protein level. RESULTS: Testosterone levels were significantly increased (P = 0.0036) in female mice with T1DM. Increasing age in female NOD mice was accompanied by obvious lymphocyte infiltration in the pancreatic islets. Moreover, the levels of serum inflammatory factors in NOD mice were sharply increased with increasing age. The fertility of female NOD mice declined markedly, and most were capable of conceiving only once. Furthermore, ovarian and uterine morphology and function were severely impaired in NOD female mice. Additionally, ovarian and uterine tissues revealed that the differentially expressed genes were primarily enriched in metabolism, cytokine-receptor interactions and chemokine signalling pathways. CONCLUSION: T1DM exerts a substantial impairment on female reproductive health, leading to diminished fertility, potentially associated with immune disorders and alterations in energy metabolism.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Feminino , Animais , Camundongos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Camundongos Endogâmicos NOD , Pâncreas/metabolismo , Pâncreas/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Citocinas/metabolismo , Inflamação/metabolismo
10.
J Control Release ; 367: 620-636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311244

RESUMO

Chemotherapeutic efficacy for pancreatic cancer is severely compromised by limited drug availability to tumor cells. Herein, we constructed a cancer cell membrane-fused liposome containing a siATG5-loaded calcium phosphate (CaP) core, termed CLip@siATG5. Through cancer cell membrane camouflage, the liposomes evaded immune clearance, actively infiltrated tumor tissues, and were preferentially taken up by homotypic tumor cells. Then, siATG5 escaped from the endosomes and was liberated in the cytoplasm, mainly benefiting from CaP dissolution-induced endosome rupture and liposome disassembly in acidic endosomes. The released siATG5 silenced autophagy protein 5 (ATG5) to inhibit autophagy, starving tumor cells. An alternative nutrient procurement pathway, macropinocytosis, was then upregulated in the cells, leading to increased uptake of the albumin-bound chemotherapeutic agent (nanoparticle albumin-bound paclitaxel (Nab-PTX)). Finally, in a murine pancreatic cancer model, CLip@siATG5 combined with Nab-PTX exerted superior efficacy to a twofold dose of Nab-PTX while avoiding its toxicity. Overall, we justified enhancing chemotherapeutic delivery by modulating the pancreatic cancer cell metabolism, which will enlighten the development of more effective chemotherapeutic adjuvants for pancreatic cancer in the future.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Lipossomos/uso terapêutico , Paclitaxel/uso terapêutico , Paclitaxel/farmacologia , Neoplasias Pancreáticas/patologia , Albuminas , Pâncreas/metabolismo , Membrana Celular/metabolismo , Linhagem Celular Tumoral , Paclitaxel Ligado a Albumina/farmacologia
11.
Pediatr Blood Cancer ; 71(5): e30923, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385860

RESUMO

BACKGROUND: In pediatric transfusion-dependent thalassemia (TDT) patients, we evaluated the prevalence, pattern, and clinical associations of pancreatic siderosis and the changes in pancreatic iron levels and their association with baseline and changes in total body iron balance. PROCEDURE: We considered 86 pediatric TDT patients consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia Network. Iron overload (IO) was quantified by R2* magnetic resonance imaging (MRI). RESULTS: Sixty-three (73%) patients had pancreatic IO (R2* > 38 Hz). Global pancreas R2* values were significantly correlated with mean serum ferritin levels, MRI liver iron concentration (LIC) values, and global heart R2* values. Global pancreas R2* values were significantly higher in patients with altered versus normal glucose metabolism. Thirty-one patients also performed the follow-up MRI at 18 ± 3 months. Higher pancreatic R2* values were detected at the follow-up, but the difference versus the baseline MRI was not significant. The 20% of patients with baseline pancreatic IO showed no pancreatic IO at the follow-up. The 46% of patients without baseline pancreatic IO developed pancreatic siderosis. The changes in global pancreas R2* between the two MRIs were not correlated with baseline serum ferritin levels, baseline, final, and changes in MRI LIC values, or baseline pancreatic iron levels. CONCLUSIONS: In children with TDT, pancreatic siderosis is a frequent finding associated with hepatic siderosis and represents a risk factor for myocardial siderosis and alterations of glucose metabolism. Iron removal from the pancreas is exceptionally challenging and independent from hepatic iron status.


Assuntos
Sobrecarga de Ferro , Siderose , Talassemia , Talassemia beta , Humanos , Criança , Ferro , Talassemia beta/complicações , Talassemia beta/diagnóstico por imagem , Talassemia beta/terapia , Siderose/complicações , Siderose/metabolismo , Siderose/patologia , Sobrecarga de Ferro/diagnóstico por imagem , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/metabolismo , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Pâncreas/patologia , Talassemia/complicações , Fígado/diagnóstico por imagem , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Ferritinas , Glucose/metabolismo
12.
Nucl Med Biol ; 130-131: 108894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422917

RESUMO

OBJECTIVE: Diabetes mellitus (DM) is one of the major diseases in the world. Nuclear medicine imaging may be able to detect functional status of pancreatic ß cells in vivo, which might elucidate the pathological mechanisms of diabetes and develop individualized treatment plans. In this study, we evaluated the ability of [125I]ADAM, a serotonin transporter (SERT) imaging agent, as a probe for detecting pancreatic ß-cell mass (BCM). METHODS: In vitro cell studies were evaluated in INS-1 cells (rat islet ß cell line). Biodistribution studies were performed in male normal Sprague-Dawley rats and alloxan-induced type 1 diabetes mellitus (T1DM) rats. Distribution and expression of SERT protein in pancreas of rats were also measured by immunofluorescence staining and Western blot. RESULTS: In vitro cell studies showed that the concentration of [125I]ADAM associated with the INS-1 cells was increased gradually with incubation time, and the SERT specific inhibitor, escitalopram, exhibited the inhibitory effect on this interaction. Biodistribution studies also showed that the uptake of [125I]ADAM in the pancreas of normal rats was decreased in the presence of escitalopram. However, in the T1DM rat model with a significant ß cells reduction, the uptake of pancreas was increased when compared with the control. Through immunofluorescence staining and Western blot, it was found that both the endocrine and exocrine cells of the normal pancreas expressed SERT protein, and the level of SERT protein in the exocrine cells was higher than islets. In the diabetic state, the expression of SERT in the exocrine cells was further increased. CONCLUSIONS: The SERT imaging agent, [125I]ADAM, at the present form will not be suitable for imaging ß cells, specifically because there were extraordinarily high non-specific signals contributing from the exocrine cells of pancreas. In addition, we noticed that the level of SERT expression was abnormally elevated in the diabetic state, which might provide an unexpected target for studying the pathological mechanisms of diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ratos , Masculino , Animais , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Ratos Sprague-Dawley , Diabetes Mellitus Tipo 1/metabolismo , Escitalopram , Distribuição Tecidual , Pâncreas/metabolismo , Serotonina/metabolismo
13.
Biomed Pharmacother ; 173: 116292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394848

RESUMO

Single-cell sequencing is a novel and rapidly advancing high-throughput technique that can be used to investigating genomics, transcriptomics, and epigenetics at a single-cell level. Currently, single-cell sequencing can not only be used to draw the pancreatic islet cells map and uncover the characteristics of cellular heterogeneity in type 2 diabetes, but can also be used to label and purify functional beta cells in pancreatic stem cells, improving stem cells and islet organoids therapies. In addition, this technology helps to analyze islet cell dedifferentiation and can be applied to the treatment of type 2 diabetes. In this review, we summarize the development and process of single-cell sequencing, describe the potential applications of single-cell sequencing in the field of type 2 diabetes, and discuss the prospects and limitations of single-cell sequencing to provide a new direction for exploring the pathogenesis of type 2 diabetes and finding therapeutic targets.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Células Secretoras de Insulina/metabolismo , Perfilação da Expressão Gênica
14.
Front Public Health ; 12: 1332346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322122

RESUMO

Purpose: To explore the association between type 2 diabetes mellitus (T2DM) and body composition based on magnetic resonance fat fraction (FF) mapping. Methods: A total of 341 subjects, who underwent abdominal MRI examination with FF mapping were enrolled in this study, including 68 T2DM patients and 273 non-T2DM patients. The FFs and areas of visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT) and abdominal muscle (AM) were measured at the level of the L1-L2 vertebral. The FF of bone marrow adipose tissue (BMAT) was determined by the averaged FF values measured at the level of T12 and L1 vertebral, respectively. The whole hepatic fat fraction (HFF) and pancreatic fat fraction (PFF) were measured based on 3D semi-automatic segmentation on the FF mapping. All data were analyzed by GraphPad Prism and MedCalc. Results: VAT area, VAT FF, HFF, PFF of T2DM group were higher than those of non-T2DM group after adjusting for age and sex (P < 0.05). However, there was no differences in SAT area, SAT FF, BMAT FF, AM area and AM FF between the two groups (P > 0.05). VAT area and PFF were independent risk factors of T2DM (all P < 0.05). The area under the curve (AUC) of the receiver operating characteristic (ROC) for VAT area and PFF in differentiating between T2DM and non-T2DM were 0.685 and 0.787, respectively, and the AUC of PFF was higher than VAT area (P < 0.05). Additionally, in seemingly healthy individuals, the SAT area, VAT area, and AM area were found to be significantly associated with being overweight and/or obese (BMI ≥ 25) (all P < 0.05). Conclusions: In this study, it was found that there were significant associations between T2DM and VAT area, VAT FF, HFF and PFF. In addition, VAT area and PFF were the independent risk factors of T2DM. Especially, PFF showed a high diagnostic performance in discrimination between T2DM and non-T2DM. These findings may highlight the crucial role of PFF in the pathophysiology of T2DM, and it might be served as a potential imaging biomarker of the prevention and treatment of T2DM. Additionally, in individuals without diabetes, focusing on SAT area, VAT area and AM area may help identify potential health risks and provide a basis for targeted weight management and prevention measures.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Composição Corporal , Imageamento por Ressonância Magnética/métodos
15.
PeerJ ; 12: e16804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313028

RESUMO

Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.


Assuntos
Antozoários , Ilhotas Pancreáticas , Animais , Humanos , Antozoários/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Transdução de Sinais
16.
Diabetes ; 73(4): 554-564, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266068

RESUMO

Assessment of pancreas cell type composition is crucial to the understanding of the genesis of diabetes. Current approaches use immunodetection of protein markers, for example, insulin as a marker of ß-cells. A major limitation of these methods is that protein content varies in physiological and pathological conditions, complicating the extrapolation to actual cell number. Here, we demonstrate the use of cell type-specific DNA methylation markers for determining the fraction of specific cell types in human islet and pancreas specimens. We identified genomic loci that are uniquely demethylated in specific pancreatic cell types and applied targeted PCR to assess the methylation status of these loci in tissue samples, enabling inference of cell type composition. In islet preparations, normalization of insulin secretion to ß-cell DNA revealed similar ß-cell function in pre-type 1 diabetes (T1D), T1D, and type 2 diabetes (T2D), which was significantly lower than in donors without diabetes. In histological pancreas specimens from recent-onset T1D, this assay showed ß-cell fraction within the normal range, suggesting a significant contribution of ß-cell dysfunction. In T2D pancreata, we observed increased α-cell fraction and normal ß-cell fraction. Methylation-based analysis provides an accurate molecular alternative to immune detection of cell types in the human pancreas, with utility in the interpretation of insulin secretion assays and the assessment of pancreas cell composition in health and disease.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Metilação de DNA , Pâncreas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo
17.
J Sci Food Agric ; 104(7): 4157-4164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38284513

RESUMO

BACKGROUND: Fucoidan has an anti-obesity effect. However, there are few studies on its mechanism. In this study, we investigated the in vitro and in silico inhibitory properties of fucoidan against pancreatic lipase for the first time. We examined the changes in composition, structure, and pancreatic lipase inhibition of fucoidan during in vitro digestion. RESULTS: Simulated saliva-gastrointestinal digestion resulted in a slight decrease in the molecular weight of fucoidan but no significant changes in the monosaccharide composition, sulfate content, and functional groups. Moreover, the digestion process significantly increased the inhibition of pancreatic lipase by fucoidan. The study on the type of inhibition showed that the inhibition of pancreatic lipase by fucoidan belonged to mixed inhibition with competitive inhibition. Molecular docking analysis showed that fucoidan could bind to the active site of pancreatic lipase. CONCLUSION: This study indicates that fucoidan can be a potential functional food for anti-obesity. © 2024 Society of Chemical Industry.


Assuntos
Lipase , Pâncreas , Polissacarídeos , Simulação de Acoplamento Molecular , Pâncreas/metabolismo , Lipase/química , Digestão
18.
Pancreas ; 53(2): e157-e163, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227616

RESUMO

OBJECTIVE: To explore the effects of branched-chain amino acids (BCAAs) on nonalcoholic fatty pancreas disease (NAFPD) and its possible mechanism in high-fat diet (HFD) induced mice. MATERIALS AND METHODS: Pancreatic morphology and lipid infiltration was assessed by hematoxylin-eosin staining and immunohistochemistry, and lipid levels in the pancreas were determined using colorimetric enzymatic method. Relevant mechanism was investigated using western blotting and biochemical test. RESULTS: In HFD-fed mice, dietary BCAAs restriction could attenuate body weight increase, improve glucose metabolism, and reduce excessive lipid accumulation in the pancreas. Furthermore, expression of AMPKα and downstream uncoupling protein 1 were upregulated, while genes related to mammalian target of rapamycin complex 1 (mTORC1) signal pathway and lipid de novo synthesis were suppressed in HFD-BCAA restriction group compared with HFD and HFD-high BCAAs fed mice. In addition, BCAA restriction upregulated expression of BCAAs related metabolic enzymes including PPM1K and BCKDHA, and decreased the levels of BCAAs and branched chain keto acid in the pancreas. However, there was no difference in levels of lipid content in the pancreas and gene expression of AMPKα and mTORC1 between HFD and HFD-high BCAAs groups. CONCLUSIONS: Branched-chain amino acid restriction ameliorated HFD-induced NAFPD in mice by activation of AMPKα pathway and suppression of mTORC1 pathway.


Assuntos
Aminoácidos de Cadeia Ramificada , Dieta Hiperlipídica , Camundongos , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Pâncreas/metabolismo , Lipídeos , Camundongos Endogâmicos C57BL , Mamíferos/metabolismo
19.
Obes Facts ; 17(2): 158-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246158

RESUMO

INTRODUCTION: The purpose of this study was to compare the difference in abdominal fat distribution between different metabolic groups and find the ectopic fat with the most risk significance. METHODS: A total of 98 subjects were enrolled; there were 53 cases in the normal glucose metabolism group and 45 cases in the abnormal glucose metabolism group. Chemical shift-encoded magnetic resonance imaging was applied for quantification of pancreatic fat fraction (PFF) and hepatic fat fraction (HFF), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT). The correlation and the difference of fat distribution between different metabolism groups were analyzed. The receiver operating characteristic (ROC) curve was used to analyze the suggestive effect of different body fat fraction. RESULTS: Correlation analysis showed that body mass index (BMI) had the strongest correlation with fasting insulin (r = 0.473, p < 0.001), HOMA-IR (r = 0.363, p < 0.001), and C-reactive protein (r = 0.245, p < 0.05). Pancreatic fat has a good correlation with fasting blood glucose (r = 0.247, p < 0.05) and HbA1c (r = 0.363, p < 0.001). With the increase of BMI, PFF, VAT, and SAT showed a clear upward trend, but liver fat was distributed relatively more randomly. The pancreatic fat content in the abnormal glucose metabolism group is significantly higher than that in the normal group, and pancreatic fat is also a reliable indicator of abnormal glucose metabolism, especially in the normal and overweight groups (the area under the curve was 0.859 and 0.864, respectively). CONCLUSION: MR-based fat quantification techniques can provide additional information on fat distribution. There are differences in fat distribution among people with different metabolic status. People with more severe pancreatic fat deposition have a higher risk of glucose metabolism disorders.


Assuntos
Resistência à Insulina , Humanos , Índice de Massa Corporal , Gordura Abdominal/diagnóstico por imagem , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Pâncreas/patologia , Gordura Intra-Abdominal/metabolismo , Imageamento por Ressonância Magnética , Glucose/metabolismo
20.
J Immunol ; 212(2): 216-224, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38166244

RESUMO

Type 1 diabetes (T1D) onset is characterized by an autoimmune attack on ß islet cells within the pancreas, preventing the insulin secretion required to maintain glucose homeostasis. Targeted modulation of key immunoregulatory cell populations is a promising strategy to restore tolerance to ß cells. This strategy can be used to prevent T1D onset or reverse T1D with transplanted islets. To this end, drug delivery systems can be employed to transport immunomodulatory cargo to specific cell populations that inhibit autoreactive T cell-mediated destruction of the ß cell mass. The rational engineering of biomaterials into nanoscale and microscale drug carriers can facilitate targeted interactions with immune cells. The physicochemical properties of the biomaterial, the delivered immunomodulatory agent, and the target cell populations are critical variables in the design of these delivery systems. In this review, we discuss recent biomaterials-based drug delivery approaches to induce islet tolerance and the need to consider both immune and metabolic markers of disease progression.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Materiais Biocompatíveis/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Tolerância Imunológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA